关于一道课本问题的变式训练
来源:网络 时间:2017-07-01 00:56:00
北师大版教材九年级上册第一章第二节提出问题“在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?”,这是等腰三角形的性质及三角形全等的知识的综合应用,由于学生在七年级就接触过这两个知识点,故对学生来说掌握起来很容易,学生在课堂上的思维训练没能达到一定的高度,针对这种情况,笔者在授课的过程中对这一课本问题进行变式,使本节课的知识达到了一定的梯度,让学生的思维产生了极大的碰撞,提高了学生的解题能力.现举例如下:
变式一:如图,D为等腰三角形ABC的底边BC上任意一点,过点D作DE⊥AB于点E,DF⊥AC于点F,过点C作CM⊥AB于点M,那么DE、DF、CM之间存在怎样的数量关系?并加以说明.
分析:首先引导学生大胆猜想三条线段的数量关系,学生很容易想到:CM=DE+DF.其次引导学生分析该问题属于证线段的和差关系,应采用截长补短法.法一:截长法.可以过点C作CN⊥ED并交ED的延长线于点N,易证四边形MENC为矩形,可得EN=CM,欲证CM=DE+DF,只须证EN=DE+DF,而EN=DE+DN,故证DN=DF即可.通过证△DFC≌△DNC即可得到DN=DF.法二:补短法.过点D作DI⊥CM并交CM于点I,证CI=DF即可.法三:由于CM是等腰三角形的高,于是联想到等积法.可连接AD,因为△ABC的面积等于AB•CM,△ABC的面积还等于AB•DE+AC•DF,又AB=AC,故CM=DE+DF.
通过此题,引导学生归纳出“到等腰三角形底边上任一点到两腰距离的和等于腰上的高”这一性质.
这是一道很常规的证线段的和差问题,学生想到方法一、二很容易,此题出彩点在引导学生想到等积法及归纳出等腰三角形的又一重要性质,并应用该性质解题,于是引出变式二、三.
变式二:点D是边长为2的等边三角形ABC的边AB上任一点,DE⊥BC于E,DF⊥AC于F,那么DE+DF的值为_____________.
分析:这是某省市一道中考填空题.有了变式一的基础,学生很容易知道求DE+DF的值就是求等边三角形一边上的高,再利用三线合一及勾股定理可求得DE+DF=.
解:过点B作BG⊥AC于G,连接CD.∵SABC=AC•BG,又∵SABC=AC•DF+BC•DE∴AC•BG=AC•DF+BC•DE,而AC=BC,故DE+DF=BG.
又∵等边三角形三线合一可知G为AC的中点,∴AG=1.∴BG=.即DE+DF=. 免费论文下载中心 变式三:在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF的值为____________.
分析:此题是一道全国初中联赛试题,在变式二的基础上又有了一定的难度,分别求出PE、PF有困难,引导学生善于从复杂图形中找到基本图形,由矩形的对角线相等且平分知△AOD为等腰三角形,P为其底上任意一点,则P到两腰的距离和等于腰上的高,故PE+PF的值等于BD边上的高,则问题迎刃而解.
解:过点A作AI⊥BD于I,连接PO.
∵在矩形ABCD中有AO=DO,
∴△AOD为等腰三角形.
∵SAOD=OD•AI=AO•PF+DO•PE,∴PE+PF=AI.
又∵SABD=AB•AD=BD•AI,∴AI=,∵AD=12,AB=5,∴AI=,即PE+PF=.
通过这一组变式,学生既掌握了大纲要求本节课应掌握的等腰三角形的性质、三角形全等的知识点,同时又回顾了矩形的性质、勾股定理、等积法、截长补短法等知识点,提高了学生归纳知识、综合运用知识及知识迁移的能力,培养了学生从复杂图形中抽象出基本图形的能力,培养了学生的发散思维.故恰当的对课本问题进行变式对提高课堂效率、提高学生的解题能力不失为一种好办法. 免费论文下载中心
变式一:如图,D为等腰三角形ABC的底边BC上任意一点,过点D作DE⊥AB于点E,DF⊥AC于点F,过点C作CM⊥AB于点M,那么DE、DF、CM之间存在怎样的数量关系?并加以说明.
分析:首先引导学生大胆猜想三条线段的数量关系,学生很容易想到:CM=DE+DF.其次引导学生分析该问题属于证线段的和差关系,应采用截长补短法.法一:截长法.可以过点C作CN⊥ED并交ED的延长线于点N,易证四边形MENC为矩形,可得EN=CM,欲证CM=DE+DF,只须证EN=DE+DF,而EN=DE+DN,故证DN=DF即可.通过证△DFC≌△DNC即可得到DN=DF.法二:补短法.过点D作DI⊥CM并交CM于点I,证CI=DF即可.法三:由于CM是等腰三角形的高,于是联想到等积法.可连接AD,因为△ABC的面积等于AB•CM,△ABC的面积还等于AB•DE+AC•DF,又AB=AC,故CM=DE+DF.
通过此题,引导学生归纳出“到等腰三角形底边上任一点到两腰距离的和等于腰上的高”这一性质.
这是一道很常规的证线段的和差问题,学生想到方法一、二很容易,此题出彩点在引导学生想到等积法及归纳出等腰三角形的又一重要性质,并应用该性质解题,于是引出变式二、三.
变式二:点D是边长为2的等边三角形ABC的边AB上任一点,DE⊥BC于E,DF⊥AC于F,那么DE+DF的值为_____________.
分析:这是某省市一道中考填空题.有了变式一的基础,学生很容易知道求DE+DF的值就是求等边三角形一边上的高,再利用三线合一及勾股定理可求得DE+DF=.
解:过点B作BG⊥AC于G,连接CD.∵SABC=AC•BG,又∵SABC=AC•DF+BC•DE∴AC•BG=AC•DF+BC•DE,而AC=BC,故DE+DF=BG.
又∵等边三角形三线合一可知G为AC的中点,∴AG=1.∴BG=.即DE+DF=. 免费论文下载中心 变式三:在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF的值为____________.
分析:此题是一道全国初中联赛试题,在变式二的基础上又有了一定的难度,分别求出PE、PF有困难,引导学生善于从复杂图形中找到基本图形,由矩形的对角线相等且平分知△AOD为等腰三角形,P为其底上任意一点,则P到两腰的距离和等于腰上的高,故PE+PF的值等于BD边上的高,则问题迎刃而解.
解:过点A作AI⊥BD于I,连接PO.
∵在矩形ABCD中有AO=DO,
∴△AOD为等腰三角形.
∵SAOD=OD•AI=AO•PF+DO•PE,∴PE+PF=AI.
又∵SABD=AB•AD=BD•AI,∴AI=,∵AD=12,AB=5,∴AI=,即PE+PF=.
通过这一组变式,学生既掌握了大纲要求本节课应掌握的等腰三角形的性质、三角形全等的知识点,同时又回顾了矩形的性质、勾股定理、等积法、截长补短法等知识点,提高了学生归纳知识、综合运用知识及知识迁移的能力,培养了学生从复杂图形中抽象出基本图形的能力,培养了学生的发散思维.故恰当的对课本问题进行变式对提高课堂效率、提高学生的解题能力不失为一种好办法. 免费论文下载中心
- 上一篇:关于数学中的情境教学三步曲
- 下一篇:浅议新课程下初中数学中双统计图的运用
相关论文
最新论文
热点论文
- [中等教育] 职专政治教育中的德育渗透
- 帮助学生树立正确的价值观和人生观,提升学生的个人品德与思想素质,是职专政治教育的主要目标与根本目的。但受限于传统政治教育的教学 [全文]
- [中国哲学] 传递“中国梦”正能量是记者的神圣使命
- 摘要:中国梦是中华民族伟大复兴的梦,是当今中华民族前进的动力,是当前中国最具影响力、最具感染力、最具普遍性的正能量。记者作为以 [全文]
- [财务控制] 论企业集团财务控制的对策
- 摘 要:市场经济飞速发展促使企业集团组织形式发生非常大的变化,那么企业集团需要有效利用自身发展优势,促进现代化经济发展。 改革逐渐 [全文]
- [财务控制] 中小企业的财务控制问题分析
- 摘 要:随着市场经济体制不断完善,我国中小企业进入快速发展阶段,其在国民经济发展中的作用被不断凸显出来。本文中笔者以中小企业财务管 [全文]
- [职业教育] 分析音乐课堂中的情感互动及学生体验
- 【摘要】针对音乐课堂中的情感互动及学生体验进行分析,基于学生的实际音乐学习需求、音乐学习目标等予以教学设计,以期能够不断提升音 [全文]
- [市场营销] 新时期下市场营销的演变趋势分析
- 摘要:随着全球经济互相影响,新市场格局的形成让新时期环境里市场营销不断发生变革。而本文主要是对当今市场新形势进行一个分析,找出对市 [全文]
- [国际贸易] 国际贸易融资创新及风险控制
- [摘 要] 国际贸易企业融资风险的主要表现有两种:一是国际贸易企业无法以自身的流动资金偿还债务,要通过集资的方式偿还债务本金和利息; [全文]
- [国际贸易] “互联网 +”时代下国际贸易发展策略研究
- 摘 要:随着网络技术和经济全球化的进一步发展,互联网关系到国际贸易领域的方方面面,并以全新的国际贸易形态,将分散在世界各地的市场, [全文]